Emergency-Stop Relay

Basic Unit

According to EN 60204-1 and EN 954-1 Feedback Circuit for Monitoring External Contactors Single or Dual Channel E-Stop Circuit is Possible With Monitoring of the RESET Switch Rated Voltage in the E-Stop Control Circuit: 24 V DC

SNO 1002	EN 60204-1	For Stop Category	0
	EN 954-1	Safety Category	4

SNO 1002

Function Diagram
FD 0108 WI
SNO 1002

Connection Diagram

SNO 1002
KS 0282/4

For example

- Protection of persons and machines
- Monitoring of sliding safety screens
- Protective measures on industrial robots
- In conjunction with programmable logic control systems

Function

After the supply voltage is applied to terminals A1/A2, and if the E-stop switch is not activated, the relay K1 is energized by the RESET switch. The contacts of relay K1 trigger the relays K2 and K3. The latter become selflocking through their own contacts. At the same time, the relay contacts of K 2 and K 3 de-energize relay K 1 . After a drop-out time delay $\mathrm{t}_{\mathrm{R} 1}$ this relay goes over into its off-position. After this switch-on phase, the three enabling current paths, which are intended for the output, are activated (terminals connection for: enabling current paths $=13 / 14,23 / 24,33 / 34$ control contact $=41 / 42$). The fleeting contact $53 / 54$ is closed only during the time when K1 is energized. It can be used, e.g., for indicator purposes or to monitor the RESET-switch (see application ex. A1001). Three LEDs provide a display, and these LEDs are associated with the safety channels and the power supply.
If the E-Stop switch is activated, the current leads for the K2 and K3 relays are interrupted. The enabling current paths $13 / 14,23 / 24$ and $33 / 34$ at the output are opened and the NC $41 / 42$ is closed. The shunt Y31/Y31 is used as a support point to simplify the wiring.

Notes

- The emergency-stop control circuit can be monitored for a ground fault through the PE device connection for AC devices.
- The PE connection is omitted for DC devices.
- Devices SNO 1002 and SNO 1004 differ only by their terminal designations.
- To multiply the enabling current paths, expansion units, or external contactive elements with positively driven contacts must be used.

Approvals
Order Example

SNO 1002 230VAC
Type

Rated Voltage

Application Example
Two-Channel Emergency-Stop Circuit

The dual channel E-Stop circuit switches off even if one of the two contacts of the E-Stop button does not open. If a fault occurs (e.g. the E-Stop contact connected to Y13 does not open), the safety circuit is activated by the second (redundant) contact Y 12 . The enabling current paths $13 / 14$, $23 / 24$ and $33 / 34$ open, the auxiliary contact $41 / 42$ closes. The remaining opened contact of K3 in the current path of K1 prevents the restart through the RESET switch. (*) The RESET switch can be monitored through the fleeting contact 53-54. If the RESET switch is closed before the power supply is applied to terminals Y12 and Y13, or there is a short circuit in the cable, the enabling current paths will remain open. If however, a short circuit in the RESET cable should occur when the relay is already active the cyclic selfchecking feature of the item will detect it when switching the supply off/on. As a consequence the enabling current paths will not close and the safety function is guaranteed.

Application Example

Two-Channel Sliding Safety Gate Monitoring

The position of the safety sliding gate is monitored through channel 1 (Y12) and channel 2 (Y13). The SNO 1002 is activated through the RESET switch. If the sliding safety gate opens, the E-Stop Safety Relay returns to its off-position and the enabling current paths $13 / 14,23 / 24$, $33 / 34$ open. If the safety gate is closed again the E-Stop Safety Relay can be activated again through the RESET switch.

Application Example

Single-Channel Emergency-Stop Circuit

The single channel fulfills the requirements of EN 60204-1. However the circuit of the E-Stop is not redundant. Ground faults in the circuit for the E-Stop contact are detected.

Application Example
External Contact Expansion

When the SNO 1002 is activated through Y22, the enabling current path 33/34 closes. The external contactors K4 and K5 switch into their operating position. If the E-Stop button is activated, the current paths Y12 and Y13 become de-energized. K2 and K3 drop out. Thus, the enabling current paths $33 / 34$ opens and the external contactors K4 and K5 likewise switch into their off position. In case of a fault in the contactors K4 and K5 a restart of the E-Stop Safety Relay is prevented by the feedback circuit.

- Contactors K4 und K5 must have positively driven contacts.
- Please note the directives of your Professional Association.

TECHNICAL DATA

FUNCTION According to EN 60204-1
Function Display
Function Diagram

POWER SUPPLY DATA

Rated Voltage U U V AC
Rated Voltage $U_{N} \quad V$ DC
Rated Consumption at 50 Hz and $\mathrm{U}_{\mathrm{N}}(\mathrm{AC})$ VA
Rated Consumption at 50 Hz and $\mathrm{U}_{\mathrm{N}}(\mathrm{AC})$ W
Rated Consumption at $U_{N}(D C)$ W
Residual Ripple
Rated Frequency
Operating Voltage Range
CONTROL CIRCUIT only for supplying the control inputs
Control Output Y1 1 with respect to PE/A2 (AC-/DC-Unit) Line Resistance (Control Inputs)
Rated Output Voltage
No-Load Voltage (AC-Unit)
Rated Current
Rated Short-Circuit Current I_{K} Max.
Fuse

Response Time	(PTC)	s
Recovery Time	(PTC)	s

Control Inputs Y12, Y13, Y21, Y22:
Rated Current Input K1
Rated Current per Input K2, K3
Response Time t $_{\text {A }} \quad$ K1, K2, K3
Release Time $t_{\text {R1 }}$ Start-Up Cycle K1
Release Time tr for the E-Stop K2, K3
Minimum Switch-ON Time ${ }_{M}$ for K1

OUTPUT CIRCUIT

Contact Equipment

Contact Type
Contact Material
Switching Voltage U_{n}
Maximum Rated Current I_{n} per Contact
Maximum Total Current for all Contacts
Application Category Acc. to EN 60947-5-1: 1991
Short-Circuit Protection, Max. Fuse Element Class gG
Permissible Switching Frequency Switching Cycle/h
Mechanical Lifetime Switching Cycles

GENERAL DATA

Creepage and Clearance Distances Between Circuits
According to DIN VDE 0110-1:04.97: Rated Withstand Voltage kV
Over-Voltage Category
Contamination Level
Design Voltage
V AC
Test Voltage $U_{\text {eff }} 50 \mathrm{~Hz}$ acc. to DIN VDE 0110-1, Table A. 1 kV
Protection Class Housing/Terminals acc. to DIN VDE 0470 Sec. 1:11.92
Radiated Noise
Noise Immunity
Ambient Temperature, Working Range
Dinension Diagram
Connection Diagram
Weight
Approvals

GENERAL TECHNICAL SPECIFICATIONS

SNO 1002

Emergency-Stop Relay
3 LED's green
FD 0108 W1

$\mathbf{2 4}$	$\mathbf{2 4}$	$\mathbf{1 1 5}$	$\mathbf{1 2 0}$	$\mathbf{2 3 0}$
	4,2	4,2	4,2	4,2
	4,0	4,0	4,0	4,0
2,4				
2,4				
50 to 60				
0,8 to $1,1 \times U_{N}$				

≤ 70
24
24
≤ 40
80
3000
AC: Short-Circuit Proof Transformer
DC: PTC-Resistance
3
2
100
40
25
70
5
60

```
3 N.O. Safety Contact
1 N.C. Control Contact
1 N.O. Fleeting Contact
Forced Guided Contact Ag-Alloy; Gold-Plated 230/230
6
18
AC-15: \(U_{\mathrm{e}} 230 \mathrm{~V}\) AC, \(\mathrm{I}_{\mathrm{e}} 4 \mathrm{~A}\) DC-13: \(U_{e} 24 \mathrm{~V} D C, I_{\mathrm{e}} 6 \mathrm{~A}\) 6
3600
\(10 \times 10^{6}\)
```

4
III
3 Outside, 2 Inside
300
2,21
IP 40/IP 20
EN 50081-1:03.93, -2:03.94
EN 50082-2:1995
-25 to +55
S 4-6
KS 0282/4
0,6 (AC-Unit), 0,5 (DC-Unit)
BG, CSA, SAG, UL
Page i. 11

