EUCHNER

Operating Instructions

Contents

1. About this document 4
1.1. Scope 4
1.2. Target group 4
1.3. Key to symbols 4
1.4. Supplementary documents 4
2. Correct use 5
3. Description of the safety function 6
4. Exclusion of liability and warranty 6
5. General safety precautions 6
6. Function 7
6.1. Door monitoring output 7
6.2. Diagnostic output 7
6.3. Limit-range monitoring 7
6.4. Switching states 7
7. Mounting 8
8. Electrical connection 9
8.1. Notes about © (4)us 10
8.2. Safety in case of faults 10
8.3. Fuse protection for power supply 10
8.4. Requirements for connecting cables 11
8.5. Maximum cable lengths 11
8.5.1. Determining cable lengths using the example table 12
8.6. Connector assignment of safety switch CES-AR 13
8.7. Connector assignment of Y -distributor 14
8.8. Connection of a single AR device 15
8.9. Connection of several devices in a switch chain 16
8.10. Information on operation on an AR evaluation unit 18
8.11. Notes on operation with safe control systems. 18
9. Setup 20
9.1. LED displays 20
9.2. Teach-in function for actuator (only for unicode evaluation) 20
9.2.1. Preparing device for the teach-in operation and teaching-in actuator 20
9.2.2. Teach-in function with series connection, replacing and teaching in device 21
9.3. Functional check 21
9.3.1. Electrical function test. 21
10. System status table 22
11. Technical data 23
11.1. Technical data for safety switch CES-AR-C.2- 23
11.1.1. Typical system times 24
11.1.2. Dimension drawing of safety switch CES-AR-C.2- 25
11.2. Technical data for actuator CES-A-BLN- 26
11.2.1. Dimension drawing 26
11.2.2. Operating distances 27
11.2.3. Typical actuating range 27
11.3. Technical data for actuator CES-A-BDN-06 28
11.3.1. Dimension drawing 28
11.3.2. Operating distances 28
12. Ordering information and accessories 29
13. Inspection and service 29
14. Service 29
15. Declaration of conformity 30

1. About this document

1.1. Scope

These operating instructions are valid for all CES-AR-C.2-... These operating instructions, the document Safety information and any enclosed data sheet form the complete user information for your device.

1.2. Target group

Design engineers and installation planners for safety devices on machines, as well as setup and servicing staff possessing special expertise in handling safety components.

1.3. Key to symbols

Symbol/depiction	Meaning
D	Printed document
(www)	Document is available for download at www.euchner.com
DANGER WARNING CAUTION	Safety precautions Danger of death or severe injuries Warning about possible injuries Caution slight injuries possible
NOTICE Important!	Notice about possible device damage Important information
Tip	Useful information

1.4. Supplementary documents

The overall documentation for this device consists of the following documents:

Document title (document number)	Contents	
Safety information (2525460)	Basic safety information	
Operating instructions (2109309)	(this document)	
Possibly enclosed data sheet	Item-specific information about deviations or additions	(www

Important!

Always read all documents to gain a complete overview of safe installation, setup and use of the device. The documents can be downloaded from www.euchner.com. For this purpose enter the doc. no. in the search box.

2. Correct use

Safety switches series CES-AR are interlocking devices without guard locking (type 4). The device meets the requirements according to EN IEC 60947-5-3. Devices with unicode evaluation possess a high coding level, devices with multicode evaluation possess a low coding level.

In combination with a movable guard and the machine control, this safety component prevents dangerous machine functions from occurring while the guard is open. A stop command is triggered if the guard is opened during the dangerous machine function.

This means:

- Starting commands that cause a dangerous machine function must become active only when the guard is closed.
- Opening the guard triggers a stop command.
- Closing a guard must not cause automatic starting of a dangerous machine function. A separate start command must be issued. For exceptions, refer to EN ISO 12100 or relevant C-standards.

Before the device is used, a risk assessment must be performed on the machine, e.g. in accordance with the following standards:
, EN ISO 13849-1

- EN ISO 12100
- IEC 62061

Correct use includes observing the relevant requirements for installation and operation, particularly based on the following standards:
, EN ISO 13849-1

- EN ISO 14119
- EN 60204-1

The safety switch is only allowed to be operated in conjunction with the intended EUCHNER CES actuators and the related connection components from EUCHNER. On the use of different actuators or other connection components, EUCHNER provides no warranty for safe function.

Connection of several devices in an AR switch chain is permitted only using devices intended for series connection in an AR switch chain. Check this in the instructions of the device in question.
A maximum of 20 safety switches are allowed to be operated in a switch chain.

Important!

The user is responsible for the proper integration of the device into a safe overall system. For this purpose, the overall system must be validated, e.g. in accordance with EN ISO 13849-2. It is only allowed to use components that are permissible in accordance with the table below.

Table 1: Possible combinations for CES components

Safety switch		Actuator			
		Door hinge right CES-A-BLN-R2-100776 100776	Door hinge left $\begin{gathered} \text { CES-A-BLN-L2-104510 } \\ 104510 \end{gathered}$	Usage independent CES-A-BLN-U2-103450 103450	osition of door hinge CES-A-BDN-06-104730 104730
		\bigcirc		\bigcirc	\bigcirc
			\bigcirc	\bigcirc	\bigcirc
Key to symbols	-	Combination possible			

NOTICE

Devices with version number V1.1.2 or higher can be operated on an AR evaluation unit. Refer to the operating instructions for the relevant AR evaluation unit for more information.

3. Description of the safety function

Devices from this series feature the following safety functions:

Monitoring of the guard position

 (interlocking device according to EN ISO 14119)- Safety function:
- The safety outputs are switched off when the guard is open (see chapter 6.4. Switching states on page 7).
- Safety characteristics: category, Performance Level, PFHD (see chapter 11. Technical data on page 23).

4. Exclusion of liability and warranty

In case of failure to comply with the conditions for correct use stated above, or if the safety regulations are not followed, or if any servicing is not performed as required, liability will be excluded and the warranty void.

5. General safety precautions

Safety switches fulfill personnel protection functions. Incorrect installation or tampering can lead to fatal injuries to personnel. Check the safe function of the safeguard particularly

- after any setup work
- after the replacement of a system component
- after an extended period without use
- after every fault

Independent of these checks, the safe function of the safeguard should be checked at suitable intervals as part of the maintenance schedule.

WARNING

Danger to life due to improper installation or due to bypassing (tampering). Safety components fulfill a personnel protection function.

- Safety components must not be bypassed, turned away, removed or otherwise rendered ineffec-
tive. On this topic pay attention in particular to the measures for reducing the possibility of bypassing according to EN ISO 14119:2013, section 7.
- The switching operation must be triggered only by actuators designated for this purpose.
- Prevent bypassing by means of replacement actuators (only for multicode evaluation). For this purpose, restrict access to actuators and to keys for releases, for example.
Mounting, electrical connection and setup only by authorized personnel possessing the following knowledge:
- specialist knowledge in handling safety components
- knowledge about the applicable EMC regulations
- knowledge about the applicable regulations on operational safety and accident prevention.

I	Important!
Prior to use, read the operating instructions and keep these in a safe place. Ensure the operating	
instructions are always available during mounting, setup and servicing. For this reason you should	
archive a printed copy of the operating instructions. You can download the operating instructions from	
www.euchner.com.	

6. Function

The safety switch monitors the position of movable guards. The safety outputs are switched on/off when the actuator is moved to/removed from the actuating range.
The system consists of the following components: coded actuator (transponder) and switch.
Whether the device learns the complete actuator code (unicode) or not (multicode) depends on the respective version.

- Devices with unicode evaluation: The actuator must be assigned to the safety switch by a teach-in operation so that it is detected by the system. This unambiguous assignment ensures a particularly high level of protection against tampering. The system thus possesses a high coding level.
- Devices with multicode evaluation: Unlike systems with unique code detection, on multicode devices a specific code is not requested but instead it is only checked whether the actuator is of a type that can be detected by the system (multicode detection). There is no exact comparison of the actuator code with the taught-in code in the safety switch (unique code detection). The system possesses a low coding level.
When the guard is closed, the actuator is moved towards the safety switch. When the operating distance is reached, power is supplied to the actuator by the switch and data are transferred.
If a permissible code is detected, the safety outputs are switched on.
The safety outputs are turned off when the guard is opened.
In the event of a fault in the safety switch, the safety outputs are switched off and the DIA LED illuminates red. The occurrence of faults is detected at the latest on the next demand to close the safety outputs (e.g. on starting).

6.1. Door monitoring output

The door monitoring output is switched on as soon as a valid actuator is detected in the actuating range.

6.2. Diagnostic output

The diagnostic output is switched on in the event of a fault (switch-on condition as for DIA LED).

6.3. Limit-range monitoring

If the safety door with the actuator should settle over time, the actuator can drift out of the read head actuating range. The device recognizes this situation and indicates that the actuator is in the limit range by flashing the STATE LED. This allows the safety door to be readjusted in time. Also see chapter 10. System status table on page 22.

6.4. Switching states

The detailed switching states for your switch can be found in the system status table (see chapter 10. System status table on page 22). All safety outputs, monitoring outputs and display LEDs are described there.

7. Mounting

CAUTION
Safety switches must not be bypassed (bridging of contacts), turned away, removed or otherwise rendered ineffective.

- Observe EN ISO 14119:2013, section 7, for information about reducing the possibilities for bypassing an interlocking device.

NOTICE

Risk of damage to equipment and malfunctions as a result of incorrect installation.

- Safety switches and actuators must not be used as an end stop.
- Observe EN ISO 14119:2013, sections 5.2 and 5.3, for information about mounting the safety switch and the actuator.
- From the assured release distance $\mathrm{S}_{\text {ar }}$, the safety outputs are safely shut down.
- When mounting several safety switches, observe the stipulated minimum distance to avoid mutual interference.

The operating distances change during the mounting of the actuator as a function of the material used for the guard.

Permissible approach directions	\square

Note the following points:

- Actuator and safety switch must be easily accessible for inspection and replacement.
- Actuator and safety switch must be fitted so that
- the front faces are at the minimum operating distance $0.8 \times \mathrm{S}_{\mathrm{ao}}$ or closer when the guard is closed (see chapter 11 . Technical data, sections Operating distances and Typical actuating range of the respective actuator). To avoid entering the area of possible side lobes, a minimum distance is to be maintained in case of a side approach direction. See chapter 11. Technical data, section Typical actuating range for the related actuator.
- when the guard is open up to the distance $S_{a r}$ (assured release distance), a hazard is excluded.
- the actuator is positively mounted on the guard, e.g. by using the safety screws included.
- The safety screws cannot be removed or tampered with using simple means.
- Pay attention to the maximum tightening torque for the read head or safety switch and actuator fastenings of 1 Nm .

8. Electrical connection

The following connection options are available:

- Separate operation
- Series connection with Y-distributors or the passive distribution module AC-DP-...-SA-... from EUCHNER (only with M12 plug connector)
- Series connection, e.g. with wiring in the control cabinet
- Operation on an AR evaluation unit.

In the event of a fault, loss of the safety function due to incorrect connection.

- To ensure safety, both safety outputs must always be evaluated.

Monitoring outputs must not be used as safety outputs.

- Lay the connecting cables with protection to prevent the risk of short circuits.

CAUTION

Risk of damage to equipment or malfunctions as a result of incorrect connection.

- Do not use a control system with pulsing or switch off the pulsing function in your control system.

The device generates its own test pulses on the safety outputs. A downstream control system must tolerate these test pulses, which may have a length of up to 1 ms .
The test pulses are also output when the safety outputs are switched off.
Depending on the inertia of the downstream device (control system, relay, etc.), this can lead to short switching processes.
The inputs on a connected evaluation unit must be positive switching, as the two outputs on the safety switch deliver a level of +24 V in the switched-on state.
All the electrical connections must either be isolated from the mains supply by a safety transformer according to IEC 61558-2-6 with limited output voltage in the event of a fault, or by other equivalent isolation measures (PELV).
All electrical outputs must have an adequate protective circuit for inductive loads. The outputs must be protected with a free-wheeling diode for this purpose. RC interference suppression units must not be used.

- Power devices which are a powerful source of interference must be installed in a separate location away from the input and output circuits for signal processing. The cable routing for safety circuits should be as far away as possible from the cables of the power circuits.
To avoid EMC interference, the physical environmental and operating conditions at the installation site of the device must comply with the requirements according to the standard EN 60204-1:2006, section 4.4.2 (EMC).
Pay attention to any interference fields from devices such as frequency converters or induction heating systems. Observe the EMC instructions in the manuals from the respective manufacturer.

[^0]
8.1. Notes about (1)

Important!

This device is intended to be used with a Class 2 power source in accordance with UL1310. As an alternative an LV/C (Limited Voltage/Current) power source with the following properties can be used:

- This device shall be used with a suitable isolating source in conjunction with a fuse in accordance with UL248. The fuse shall be rated max. 3.3 A and be installed in the max. 30 V DC power supply to the device in order to limit the available current to comply with the (Llus requirements. Please note possibly lower connection ratings for your device (refer to the technical data).
- For use and applications as per the requirements of (④) 1), a connecting cable listed under the UL category code CYJV2 or CYJV must be used.

8.2. Safety in case of faults

- The operating voltage U_{B} is reverse polarity protected.
- The safety outputs are short circuit-proof.
- A short circuit between the safety outputs is detected by the switch.
- A short circuit in the cable can be excluded by laying the cable with protection.

8.3. Fuse protection for power supply

The power supply must be provided with fuse protection depending on the number of switches and the current required for the outputs. The following rules apply:

Max. current consumption of an individual switch $I_{\text {max }}$
$I_{\text {max }}=I_{\text {UB }}+I_{\text {OUT }}+I_{\text {OA }}+$ OB
IUB $=$ Switch operating current (50 mA)
$I_{\text {OUT }}=$ Load current of monitoring outputs (max. 50 mA)
$\mathrm{I}_{\mathrm{OA}+O B}=$ Load current of safety outputs $\mathrm{OA}+\mathrm{OB}(2 \times \mathrm{max} .200 \mathrm{~mA})$

Max. current consumption of a switch chain $\Sigma I_{\text {max }}$

$\Sigma I_{\text {max }}=I_{O A+O B}+n x\left(l_{U B}+I_{\text {OUT }}\right)$
n $\quad=$ Number of connected switches

8.4. Requirements for connecting cables

CAUTION

Risk of damage to equipment or malfunctions as a result of incorrect connecting cables. - Use connection components and connecting cables from EUCHNER.

- On the use of other connection components, the requirements in the following table apply. EUCHNER provides no warranty for safe function in case of failure to comply with these requirements.

Observe the following requirements with respect to the connecting cables:

Parameter	Value	Unit
Conductor cross-section, min.	$0.14 \ldots 0.34$	$\mathrm{~mm}^{2}$
R max.	150	Ω / km
C max.	120	$\mathrm{nF} / \mathrm{km}$
L max.	0.65	$\mathrm{mH} / \mathrm{km}$
Recommended cable type	LIYY 8×0.34 mm	

8.5. Maximum cable lengths

Switch chains are permitted up to a maximum overall cable length of 200 m taking into account the voltage drop as a result of the cable resistance (see table below with example data and case example).

n Max. number of switches	$I_{\text {OUT }}(m A)$ Possible output current per channel OA/OB	$I_{1}(\mathrm{~m})$ Max. cable length from the last switch to the control system	
		$0.14 \mathrm{~mm}^{2}$	$0.34 \mathrm{~mm}^{2}$
	10	70	140
	25	50	110
5	50	35	80
	100	25	50
	200	13	25
	10	60	120
	25	50	90
6	50	35	70
	100	20	50
	200	13	25
	10	35	70
	25	30	60
10	50	25	50
	100	15	35
	200	10	20

8.5.1. Determining cable lengths using the example table

Example: 6 switches are to be used in series. Cabling with a length of 40 m is routed from a safety relay in the control cabinet to the last switch (\#6). Cables with a length of 20 m each are connected between the individual safety switches.

Figure 1: Circuit example with six CES-AR
A safety relay is connected downstream that consumes 75 mA at each of the two safety inputs. It operates over the whole temperature range with a voltage of 19.2 V (corresponds to $24 \mathrm{~V}-20 \%$).

All the relevant values can now be determined using the example table:

1. Select the corresponding section in the column n (max. number of switches). In this case: 6 switches.
2. In column $\mathrm{I}_{\text {OUT }}$ (possible output current per channel $O A / O B$), find a current greater than or equal to 75 mA . In this case: 100 mA .
\Rightarrow It is then possible to determine the maximum cable length from the last switch (\#6) to the control system from column I_{1}. In this case, a length of 50 m is permitted.

Result: The desired cable length I_{1} of 40 m is below the permitted value from the table. The overall length of the switch chain $I_{\max }$ of 140 m is less than the maximum value of 200 m .
\Rightarrow The planned application is therefore functional in this form.

8.6. Connector assignment of safety switch CES-AR

View of connection side on the safety switch

Figure 2: Connector assignment of safety switch CES-AR

Pin Designation		Description	
1	IB	Enable input for channel 2	Conductor coloring
2	UB	Power supply, DC 24 V	BN
3	OA	Safety output, channel 1	GN
4	OB	Safety output, channel 2	YE
5	OUT	Monitoring output	GY
6	IA	Enable input for channel 1	PK
7	OV	Ground, DC 0 V	BU
8	RST	Reset input	RD

8.7. Connector assignment of Y-distributor

Connector assignment of safety switch CES-AR (8-pin plug) and Y-distributor (8-pin socket)	
Pin	Function
X1.1	IB
X 1.2	U_{B}
X 1.3	OA
X 1.4	OB
X 1.5	OUT
X 1.6	IA
X 1.7	OV
X 1.8	RST

Y-distributor with connecting

cable 111696 or 112395
Socket

Pin	Function	Pin	Function
X2.1	U_{B}	X3.1	U_{B}
X2.2	OA	X3.2	IA
X2.3	0 V	X3.3	0 V
X2.4	OB	X3.4	IB
X2.5	RST	X3.5	RST

Pin	Function
$X 2.1$	U_{B}
$X 2.2$	$O A$
$X 2.3$	0 V
$X 2.4$	$O B$
$X 2.5$	RST

Y-distributor

 097627

Pin	Function
X 3.1	U_{B}
X 3.2	IA
X 3.3	0 V
X 3.4	IB
X 3.5	RST

8.8. Connection of a single AR device

If a single AR device is used, connect the device as shown in Figure 3. Monitoring outputs can be routed to a control system.
The switch can be reset via the RST input. To do this, a voltage of 24 V is applied to the RST input for at least 3 seconds. The RST input must be connected to 0 V if it is not used.

Figure 3: Connection example for separate operation of a CES-AR-...

8.9. Connection of several devices in a switch chain

Important!

An AR switch chain may contain a maximum of 20 safety switches.
The example shows only an excerpt that is relevant for the connection of the CES system.
The example illustrated here does not show complete system planning. The user is responsible for safe integration into the overall system. Detailed application examples can be found at www.euchner.com. Simply enter the order number of your switch in the search box. You will find all available connection examples for the device in Downloads.

The series connection is shown here based on the example of the version with plug connector M12. The switches are connected one behind the other with the aid of pre-assembled connecting cables and Y-distributors. If a safety door is opened or if a fault occurs on one of the switches, the system shuts down the machine. A higher-level control system cannot, however, detect which safety door is open or on which switch a fault has occurred with this connection technology. A special AR evaluation unit is required for this purpose (see chapter 8.10. Information on operation on an AR evaluation unit on page 18).

The series connection can also be realized via additional terminals in a control cabinet.
The safety outputs are permanently assigned to the respective safety inputs of the downstream switch. OA must be connected to IA and OB to IB. If the connections are interchanged (e.g. OA to IB), the device will switch to fault state.
Always use the RST input in series connections. All switches in a chain can be reset at the same time with this reset input. To do this, a voltage of 24 V must be applied to the RST input for at least 3 seconds. If the RST input is not used in your application, it should be connected to 0 V .
Note the following on this aspect:

- A common signal must be used for all switches in the chain. This can be a changeover switch or the output of a control system. A pushbutton is not suitable because the reset must always be connected to GND during operation (see switch S1 in Figure 4 on page 17).
- Reset must always be performed simultaneously for all switches of the chain.

Figure 4: Connection example for series connection with reset and changeover switch

8.10. Information on operation on an AR evaluation unit

Devices with version number V1.1.2 or higher can be operated on an AR evaluation unit. Refer to the operating instructions for the relevant AR evaluation unit for more information.

8.11. Notes on operation with safe control systems

Please observe the following requirements for connection to safe control systems:

- Use a common power supply for the control system and the connected safety switches.
- A pulsed power supply must not be used for U_{B}. Tap the supply voltage directly from the power supply unit. If the power supply is connected to a terminal of a safe control system, this output must provide sufficient electrical current.
- Always connect inputs IA and IB directly to a power supply unit or to outputs OA and OB of another EUCHNER AR device (series connection). Pulsed signals must not be present at inputs IA and IB.
- The safety outputs (OA and OB) can be connected to the safe inputs of a control system. Prerequisite: The input must be suitable for pulsed safety signals (OSSD signals, e.g. from light grids). The control system must tolerate test pulses on the input signals. This normally can be set up by parameter assignment in the control system. Observe the notes of the control system manufacturer. For the pulse duration of your safety switch, refer to chapter 11. Technical data on page 23.
A detailed example of connecting and setting the parameters of the control system is available for many devices at www.euchner.com, in the area Downloads/Applications/CES. The features of the respective device are dealt with there in greater detail.

EN

Figure 5: Connection example for mixed series connection ($2 \times$ CES and $1 \times$ CET) to ET200

9. Setup

9.1. LED displays

You will find a detailed description of the signal functions in chapter 10. System status table on page 22.

9.2. Teach-in function for actuator (only for unicode evaluation)

The actuator must be allocated to the safety switch using a teach-in function before the system forms a functional unit. During a teach-in operation, the safety outputs and the monitoring output OUT are switched off, i.e. the system is in the safe state.

It is recommended to perform the teach-in operation prior to mounting. Mark switches and actuators that belong together in order to avoid confusion. For devices to be connected in series, we recommend performing the teach-in operation separately for each device prior to series connection.

9.2.1. Preparing device for the teach-in operation and teaching-in actuator

1. Apply operating voltage to the safety switch.
\Rightarrow The green LED flashes quickly (approx. 10 Hz).
A self-test is performed during this time (approx. 10 s). After this, the LED flashes cyclically three times and signals that it is in standby state for teach-in.
Standby state for teach-in remains active for approx. 3 minutes.
2. Move new actuator to the read head (observe distance $<\mathrm{S}_{\mathrm{ao}}$).
\Rightarrow Teach-in operation starts, green LED flashes (approx. 1 Hz). During the teach-in operation, the safety switch checks whether the actuator is a disabled actuator. Provided this is not the case, the teach-in operation is completed after approx. 60 seconds, and the green LED goes out. The new code has now been stored, and the old code is disabled.
3. To activate the new actuator code from the teach-in operation in the safety switch, the operating voltage to the safety switch must then be switched off for min. 3 seconds.

9.2.2. Teach-in function with series connection, replacing and teaching in device

It is recommended not to teach-in the actuators in the series connection but to teach them in one by one instead. Teach-in in a series connection works analogously to separate operation in principle. All switches in the chain can be taught-in at the same time. The prerequisite is that the switch chain functions without problems and the following steps are followed. Further steps might have to be observed for mixed switch chains (e.g. for chains with CES and safety switches with guard locking). Observe the operating instructions for the other devices in the chain for this purpose.

Work on the wiring (e.g. during device replacement) should generally be performed in a de-energized state. On certain systems, it is nevertheless necessary to perform this work and subsequent teach-in during ongoing operation.
The RST input must be connected as shown in Figure 4 on page 17 to permit this.
Proceed as follows:

1. Open the guard on which the switch or actuator is to be replaced.
2. Mount the new switch or actuator and prepare it for the teach-in operation (see chapter 9.2.1. Preparing device for the teach-in operation and teaching-in actuator on page 20).
3. Close all guards in the chain.
4. Actuate the reset for at least $3 \mathrm{~s}(24 \mathrm{~V}$ on RST).
\Rightarrow On the safety switch that is positioned at a new actuator, the green LED flashes at approx. 1 Hz and the actuator is taught-in. This takes approx. 1 min . Do not switch off during this time and do not actuate reset! The teach-in operation has ended when all LEDs on the device are off.
5. Actuate the reset for at least $3 \mathrm{~s}(24 \mathrm{~V}$ on RST).
\Rightarrow The system restarts and then continues to function in normal operation.

9.3. Functional check

\triangle

WARNING

Danger of fatal injury as a result of faults in installation and functional check.

- Before carrying out the functional check, make sure that there are no persons in the danger zone.

Observe the valid accident prevention regulations.

9.3.1. Electrical function test

After installation and any fault, the safety function must be fully checked. Proceed as follows:

1. Switch on operating voltage.
\Rightarrow The machine must not start automatically.
\Rightarrow The safety switch carries out a self-test. The green STATE LED flashes for 10 s at 10 Hz . The green STATE LED then flashes at regular intervals.
2. Close all guards.
\Rightarrow The machine must not start automatically.
\Rightarrow The green STATE LED illuminates continuously.
3. Enable operation in the control system.
4. Open the guard.
\Rightarrow The machine must switch off and it must not be possible to start it as long as the guard is open.
\Rightarrow The green STATE LED flashes at regular intervals.
Repeat steps 2-4 for each guard.

10. System status table

Operating mode				LED indicat Output 	$\begin{aligned} & \overline{\overline{0}} \\ & \frac{\vdots}{\overline{0}} \end{aligned}$	State
Self-test	X	off	off	$\begin{array}{ll} \because-10 \mathrm{~Hz} \\ (10 \mathrm{~s}) \end{array}$	\bigcirc	Self-test after power-up
	closed	on	on	- シ	\bigcirc	Normal operation, door closed
	closed	on	on	$\begin{array}{cc} \text { Inverted } \\ \hdashline-\quad \text { flash } \\ \text { burst } \end{array}$	0	Normal operation, door closed, actuator in the limit range \Rightarrow Re-adjust door (V. 1.1.2 or higher)
Normal operation	closed	off	on	$\begin{array}{cc} 1 x \\ \text { inverse } \end{array}$	\bigcirc	Normal operation, door closed, preceding device in the switch chain signals door open (only with series connection)
	open	off	off	$\therefore 1 x$	\bigcirc	Normal operation, door open
	open	off	off	为 $2 x$	\bigcirc	Normal operation, door open; no actuator was taught in successfully during initial setup
	open	off	off	$\therefore \quad 3 x$	\bigcirc	Door open, device is ready for teach-in for a new actuator (only short time after power-up) - Switches that have not been taught-in remain in teach-in standby until the teach-in operation starts
(only unicode)	closed	off	off	$\cdots 1 \mathrm{~Hz}$	\bigcirc	Teach-in operation
	X	off	off	\bigcirc	\bigcirc	Positive acknowledgment after completion of teach-in operation
	X	off	off	$\because 2 x$		Input fault (e.g. missing test pulses, illogical switch state from preceding device in the switch chain)
Fault display	X	off	off	$\because \quad 4 x$	30	Output fault (e.g. short circuits, loss of switching ability)
	X	off	off	$\text { - } 5 x$	$=16$	Internal fault (e.g. component faulty, data error)
						LED not illuminated
						LED illuminated
Key to symbols			- 10	$z(10 \mathrm{~s})$		LED flashes for 10 seconds at 10 Hz
						LED flashes three times, cycle time 7 s
						Any state

After the cause has been remedied, faults can generally be reset by opening and closing the guard. If the fault is still displayed afterward, use the reset function or briefly interrupt the power supply. Contact the manufacturer if the fault could not be reset after restarting.

Important!
If you do not find the displayed device status in the system status table, this indicates an internal device fault. In this case, you should contact the manufacturer.

Operating Instructions Non-Contact Safety Switch CES-AR-C.2-...

11. Technical data

NOTICE

If a data sheet is included with the product, the information on the data sheet applies.

11.1. Technical data for safety switch CES-AR-C.2-...

[^1]
11.1.1. Typical system times

Refer to the technical data for the exact values.
Ready delay: After switch-on, the device carries out a self-test. The system is ready for operation only after this time.
Turn-on time of safety outputs: The max. reaction time t_{o} is the time from the moment when the actuator is in the actuating range to the moment when the safety outputs switch on.

Simultaneity monitoring of safety inputs IA/IB: If the safety inputs have different switching states over a certain time, the safety outputs ($O A$ and $O B$) will be switched off. The device switches to the fault state.

Risk time according to EN 60947-5-3: If an actuator moves outside the actuating range, the safety outputs (OA and OB) are deactivated at the latest after the risk time.
If several devices are operated in a series connection, the risk time of the overall device chain will increase with each device added. Use the following calculation formula:
$t_{r}=t_{r, e}+\left(n \times t_{1}\right)$
$t_{r}=$ Total risk time
$\mathrm{t}_{\mathrm{r}, \mathrm{e}}=$ Risk time, single device (see technical data)
$t_{1}=$ Risk time delay per device
$\mathrm{n}=$ Number of additional devices (total number -1)
Discrepancy time: The safety outputs (OA and OB) switch with a slight time offset. They have the same signal state no later than after the discrepancy time.

Test pulses at the safety outputs: The device generates its own test pulses on the safety outputs ($O A$ and $O B$). A downstream control system must tolerate these test pulses.
This can usually be set up in the control systems by parameter assignment. If parameter assignment is not possible for your control system or if shorter test pulses are required, contact our support organization.
The test pulses are also output when the safety outputs are switched off.

11.1.2. Dimension drawing of safety switch CES-AR-C.2-...

Safety switch CES-AR-CL2-AH...

11.2. Technical data for actuator CES-A-BLN-...

11.2.1. Dimension drawing

NOTICE

2 safety screws M4x14 included.

11.2.2. Operating distances

Actuating range for center offset $\mathbf{m}=0{ }^{1)}$

Parameter	Value			Unit
	min.	typ.	max.	
Operating distance	-	15	-	mm
Assured operating distance $\mathrm{Sa}_{\text {o }}$	10	-	-	
Switching hysteresis	1	2	-	
Assured release distance S_{ar} - in x / z direction - in y direction	-	-	$\begin{aligned} & 40 \\ & 60 \end{aligned}$	

1) The values apply to surface mounting of the actuator in metal.

11.2.3. Typical actuating range

(only in combination with actuator CES-A-BLN-...)

Figure 6: Typical actuating range

11.3. Technical data for actuator CES-A-BDN-06

11.3.1. Dimension drawing

今

CAUTION

Do not mount at temperatures below $0^{\circ} \mathrm{C}$.
The actuator can be damaged during mounting.

11.3.2. Operating distances

Actuating range for center offset $\mathbf{m}=0{ }^{1 \text { 1 }}$

Parameter	Value			Unit
	min.	typ.	max.	
Operating distance	-	19	-	mm
Assured operating distance s_{a}	14	-	-	
Switching hysteresis	-	2	-	
Assured release distance S_{ar} - in x / z direction - in y direction	-	-	$\begin{aligned} & 40 \\ & 60 \end{aligned}$	

1) The values apply to surface mounting of the actuator in non-metallic material.

12. Ordering information and accessories

Suitable accessories, e.g. cables or assembly material, can be found at www.euchner.com. To order, enter the order number of your item in the search box and open the item view. Accessories that can be combined with the item are listed in Accessories.

13. Inspection and service

WARNING
Loss of the safety function because of damage to the device.

- In case of damage, the entire device must be replaced.
- Only accessories or spare parts that can be ordered from EUCHNER may be replaced.

Regular inspection of the following is necessary to ensure trouble-free long-term operation:

- Check the switching function (see chapter 9.3. Functional check on page 21)
- Check the secure mounting of the devices and the connections
- Check for soiling

No servicing is required. Repairs to the device are only allowed to be made by the manufacturer.

$\mathbf{1}$	NOTICE The year of manufacture can be seen in the lower right corner of the rating plate. The current version number in the format (VX.X.X) can also be found on the device.

14. Service

If servicing is required, please contact:
EUCHNER GmbH + Co. KG
Kohlhammerstraße 16
70771 Leinfelden-Echterdingen

Service telephone:

+49 711 7597-500

E-mail:

support@euchner.de
Internet:
www.euchner.com

15. Declaration of conformity

Die Schutzziele der Niederspannungsrichtlinie 2014/35/EU und EMV Richtinie 2014/30/EU werden gemäß Artikel 3.1 der FunkanlagenRichtlinie eingehalten.
The safety objectives of the Low-voltage directive 2014/35/EU and EMC Directive 2014/30/EU comply with article 3.1 of the Radio equipment directive.
Les objectifs de sécurité de la Directive basse tension 2014/35/UE et Directive de CEM 2014/30/EU sont conformes à l'article 3.1 de la Directive équipement radioélectrique.
Gli obiettivi di sicurezza della Direttiva bassa tensione 2014/35/UE e Direttiva CEM 2014/30/UE sono conformi a quanto riportato nell' articolo 3.1 della Direttiva apparecchiatura radio.

Los objetivos de seguridad de la Directiva de bajo voltaje 2014/35/UE y Directiva CEM 2014/30/UE cumplen con el articulo 3.1 de la Directiva equipo radioeléctrico.

Folgende Normen sind angewandt: Following standards are used:
Les normes suivantes sont appliquées.
Vengono applicate le seguenti norme: Se utilizan los siguientes estándares:

EN 60947-5-3:2013	e:	EN 50364:2010
EN ISO 14119:2013	f:	EN 300 330 V2.1.1

EN ISO 14119:2013
EN ISO 13849-1:2015
EN 50581:2012 (RoHS)
f: EN 300330 V2.1.1

Bezeichnung der Bauteile	Type	Richtlinie	Normen	Zertifikats-Nr.
Description of components	Type	Directives	Standards	No. of certificate
Description des composants	Type	Directive	Normes	Numéro du certificat
Descrizione dei componenti	Tipo	Direttiva	Norme	Numero del certificato
Descripción de componentes	Typo	Directivas	Estándares	Número del certificado
Sicherheitsschalter	CES-AP-CR2-...			
Safety Switches	CES-AP-CL2-...	I, II, III	a, b, c, d, e, f	ET 19007
Interrupteurs de sécurité	CES-AP-C01-CH-SA	I, II, III	a, b, c, d, e, f	ET 18055
Finecorsa di sicurezza	CES-AR-C01-...	I, $11,11 \mid$	a, b, c, d, e, f	ET 18055
Interruptores de seguridad	$\begin{aligned} & \text { CES-AR-CL2- } \\ & \text { CES-AR-CR2- } \end{aligned}$	I, It, III	a, b, c, d, e, f	ET 19009
Betätiger	CES-A-BLN...	I, II, III	a, b, c, d, e, f	ET 19007
Actuator	CES-A-BDN...			ET 19009
Actionneur	CES-A-BBA...			
Azionatore	CES-A-BCA...			
Actuador	CES-A-BPA CES-A-BRN.	1, 1, in	a, b, c, d, e, f	E• 18055

Benannte Stelle
Notified Body
Organisme notifié
Sede indicata
Entidad citada

NB 0340
DGUV Test
Prüf- und Zertifizierungsstelle Elektrotechnik
Fachbereich ETEM
Gustav-Heinemann-Ufer 130
50968 Köln

More than safety.

Leinfelden, März 2019
EUCHNER GmbH + Co. KG
Kohlhammerstraße 16
70771 Leinfelden-Echterdingen Germany

i.A. Dipl.-Ing. Richard Holz Leiter Elektronik-Entwicklung Manager Electronic Development Responsable Développement Électronique Direttore Sviluppo Elettronica Director de desarrollo electrónico

i.A. Dipl-Ing. (FH) Duc Binh Nguyen Dokumentationsbevollmächtigter Documentation manager
Responsable documentation
Responsabilità della documentazione Agente documenta

Euchner GmbH + Co. KG
Kohlhammerstraße 16
70771 Leinfelden-Echterdingen
info@euchner.de
www.euchner.com

Edition:
2109309-10-05/20
Title:
Operating Instructions Non-Contact Safety Switch CES-AR-C.2-..
(Translation of the original operating instructions) Copyright:
© EUCHNER GmbH + Co. KG, 05/2020

Subject to technical modifications; no responsibility is accepted for the accuracy of this information.

[^0]: (1)

 ## Important!

 If the device does not appear to function when operating voltage is applied (e.g. green STATE LED does not flash), the safety switch must be returned unopened to the manufacturer.

[^1]: 1) Values at a switching current of 50 mA without taking into account the cable length.
 2) Applying the limit value from EN ISO 13849-1:2008, section 4.5 .2 (MTTF $_{D}=$ max. 100 years), the employers' liability insurance association certifies a PFH ${ }_{D}$ of max. $2.47 \times 10-8$.
